DSP4audio

Kostengünstiges Consumer Audio DSP-System mit umfangreicher Software-Bibliothek

Inhaltsverzeichnis

Beschreibung	3
Spezifikation	3
Blockdiagramm	4
Externe Anschlüsse	5
Stromversorgung P200	5
Analogeingang symmetrisch P210	6
Analogeingang unsymmetrisch P211	
Anschluß für Erwieterungen P212	6
Analogausgang 2 P220	6
Analogausgang 1 P221	6
Analogausgang 0 P222	7
Anschluss für externe Steuerung P230	
DSP I/O Anschluss P240	7
Stiftleisten und Jumper	7
Verbindung Gehäusemasse J1	
Erwieterungen J2	
I/O-Anschluss DSP J3	8
I/O-Anschluss DSP J4	8
Analogausgang 3 J5	9
ADDR1/CDATA/WB J6	9
SELFBOOT-Funktion des DSP J7	9
CLATCH/WP-Funktion des DSP J8	9
RESET-Eingang J9	9
I/O-Pins des Mikrocontrollers J10 und J11	9
I2C-Verbindung DSP-Mikrocontroller SDA J12	10
I2C-Verbindung DSP-Mikrocontroller SCL J13	10
Digitale Signalverarbeitung	10
Externe Steuerung	11
I/O-Pins des DSP	11
PC-Software	11
Technische Daten	11

Beschreibung

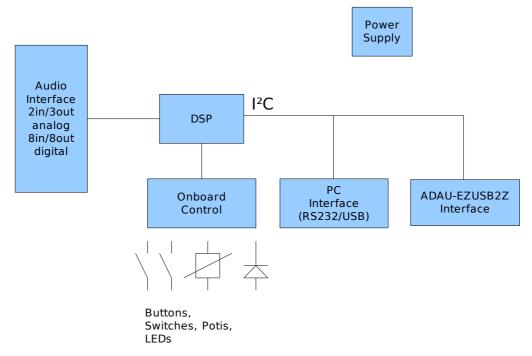
DSP4audio ist ein Audio-DSP Board, das sehr einfach aufgebaut ist. Es ist dadurch preislich konkurrenzlos, denn durch Verwendung des SigmaDSP™ von Analog Devices reduziert sich die Peripherie auf ein Minimum. Die Leiterplatte benötigt nur 2 Kupferlagen.

Ungeachtet des Preises bietet es eine hohe Performance. Der DSP-Core kann mit 56 Bit Double-Precision Algorithmen arbeiten und der Analogteil bietet hochwertige symmetrische Low-Noise Verstärkerstufen.

DSP4audio soll dem Kunden als Protytyping-Plattform dienen. Es bietet bereits alle erforderlichen Funktionen, wie eine Standard-Firmware mit Update-Funktion und Peripherie, um bereits in der Produktdefinitionsphase zum Einsatz zu kommen. Änderungen in der Signalverarbeitung werden nach Wunsch innerhalb kürzester Zeit konfiguriert, per E-Mail versandt und durch die Update-Funktion aufgespielt.

Durch EMV-gerechtes Design und die strikte Trennung von Analog- und Digitalteil ist das System aber auch sofort in Ihrer Applikation einsetzbar.

Typische Anwendungen sind z.B.


- Subwoofer-Weichen mit Frequenzgangkorrektur und Limiter (Default-Application)
- Effektgeräte
- DSP-Subsystem für Verstärkerendstufen

Spezifikation

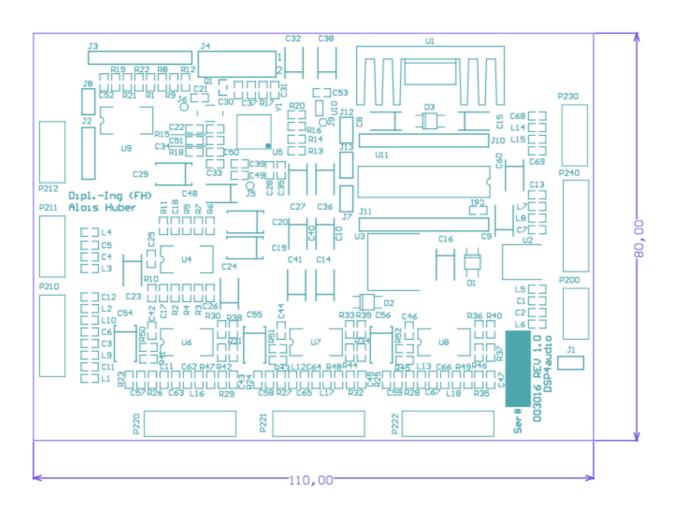
- Stand-alone DSP-System, basierend auf SigmaDSP(TM) von Analog Devices
- Analog 2-In, 3-Out (opt. 4-Out), symmetrisch + asymmetrisch, +4 dBu
- · Digital 8-In, 8-Out
- DNR: >95 dB
- Kundenspezifische digitale Signalverarbeitung wird rasch erstellt. Alle zur Audio-Bearbeitung erforderlichen Algorithmen (Crossover, Compressor/Limiter/Expander, EQ, Delay, Lautsprecher Frequenzgangkorrektur, etc.) stehen zur Verfügung und müssen nicht neu entwickelt werden.
- 28 Bit Core. 56 Bit Double Precision
- Steuerung über 12 I/O-Pins konfigurierbar, Taster, Schalter, Drehimpulsgeber, Potis bzw. digitale Audio Input / Outputs
- PC-Schnittstelle (RS232 / USB to I2C Converter) ermöglicht ebenfalls Steuergung aller Parameter sowie Firmware-Updates

Durch Verwendung der Software SigmaStudio und des USB-Adapters EVAL-ADUSB2Z von Analog Devices ist jede beliebige Konfiguration der Signalverarbeitung vom Benutzer aus möglich

Blockdiagramm

Das Audio Interface verfügt über 2 analoge, elektronisch symmetrierte Eingänge und 3 (opt. 4) ebenfalls elektronisch symmetrierte Ausgänge. Digital sind 8 Ein- und 8 Ausgänge (I²S, TDM, left-/right-justified) verfügbar.

Der DSP-Block besteht aus einem SigmaDSP $^{\text{\tiny M}}$ von Analog Devices mit der nötigen Takterzeugung und RESET-Generator.


Die Onboard-Steuergung verfügt über 12 Multi-I/O Pins. Hier können Taster, Schalter, Drehimpulsgeber, Potis sowie LEDs angeschlossen werden. Die Konfiguration erfolgt im DSP.

Das PC-Interface besteht aus einem Mikrocontroller, der die Steuerungsbefehle und -daten auswertet und an den DSP über den I²C-Bus sendet bzw. empfängt. Es können alle im ADAU170x implementierten READ-und WRITE-Befehle übertragen werden. Beispiele sind:

- Einzeldaten und Datenblöcke lesen / schreiben
- Safeload von z.B. Filterparametern
- Download von Programm, Daten und Parameter

Das Power-Supply übernimmt die Versorgung des Digital- und Analogteils.

Externe Anschlüsse

Abbildung 1: Anschlüsse

Die externen Anschlüsse sind als JST Steckverbinder ausgeführt.

Stromversorgung P200

Pin	Funktion	Beschreibung
1	VIN+	Positive Betriebsspannung
2	GND	Gemeinsamer Masseanschluss (Masseknoten)
3	VIN-	Negative Betriebsspannung

Analogeingang symmetrisch P210

Pin	Funktion	Beschreibung
1	AIN_S_1_P	Positiver Eingang zu ADC 1
2	AIN_S_1_N	Negativer Eingang zu ADC 1
3	AIN_S_1_GND	Masse Eingang ADC 1 (analog)
4	AIN_S_0_GND	Masse Eingang ADC 0 (analog)
5	AIN_S_0_N	Negativer Eingang zu ADC 0
6	AIN_S_0_P	Positiver Eingang zu ADC 0

Analogeingang unsymmetrisch P211

Pin	Funktion	Beschreibung
1	AIN_A_1_VIN	Eingang zu ADC 1
2	AIN_A_1_GND	Masse Eingang ADC 1 (analog)
3	AIN_A_0_GND	Masse Eingang ADC 0 (analog)
4	AIN_A_0_VIN	Eingang zu ADC 0

Anschluß für Erwieterungen P212

Pin	Funktion	Beschreibung
1		
2	Reserviert für Erwieterungen	
3		1.000 1.010 1.01 <u>2</u> 1.1110001.011.00
4		

Analogausgang 2 P220

Pin	Funktion	Beschreibung
1	nc.	
2	nc.	
3	nc.	
4	AOUT_S_2_N	Negativer Ausgang von DAC 2
5	AOUT_S_2_N_GND	Masse Ausgang DAC 2 (analog)
6	AOUT_S_2_P_GND	Masse Ausgang DAC 2 (analog)
7	AOUT_S_2_P	Positiver Ausgang von DAC 2

Analogausgang 1 P221

Pin	Funktion	Beschreibung
1	nc.	
2	nc.	
3	nc.	

4	AOUT_S_1_N	Negativer Ausgang von DAC 1
5	AOUT_S_1_N_GND	Masse Ausgang DAC 1 (analog)
6	AOUT_S_1_P_GND	Masse Ausgang DAC 1 (analog)
7	AOUT_S_1_P	Positiver Ausgang von DAC 1

Analogausgang 0 P222

Pin	Funktion	Beschreibung
1	nc.	
2	nc.	
3	nc.	
4	AOUT_S_0_N	Negativer Ausgang von DAC 0
5	AOUT_S_0_N_GND	Masse Ausgang DAC 0 (analog)
6	AOUT_S_0_P_GND	Masse Ausgang DAC 0 (analog)
7	AOUT_S_0_P	Positiver Ausgang von DAC 0

Anschluss für externe Steuerung P230

Der RS232-Anschluss ist als 3,3V-Signalpegel ausgeführt. Zum Anschluss eines RS232-Geräts muss ein Pegelwandler oder ein RS232-USB-Wandler zwischengeschaltet werden.

Pin	Funktion	Beschreibung
1	DVDD	Interne Betriebsspannung Digitalteil
2	RS232_RXD	RS232-Schnittstelle Dateneingang, 3,3V-Pegel
3	RS232_TXD	RS232-Schnittstelle Datenausgang, 3,3V-Pegel
4	GND	Masseanschluss (digital)

DSP I/O Anschluss P240

Pin	Funktion	Beschreibung
1	GND	Masseanschluss (digital)
2	Gain	Anschluss an MP9 des DSP
3	Freq	Anschluss an MP2 des DSP
4	nc.	
5	nc.	
6	nc.	
7	nc.	

Stiftleisten und Jumper

Verbindung Gehäusemasse J1

Über diesen Jumper kann die Masse (Masseknoten) mit der Platinenbefestigung elektrisch verbunden oder abgekoppelt werden (Ground-Lift). Es kann auch eine sternförmige Masseverlegung damit durchgeführt

werden.

Pin	Funktion	Beschreibung
1	SGND	Masseanschluss Schraubösen zum Gehäuse
2	GND	Masseanschluss (Masseknoten)

Erwieterungen J2

Dieser Jumper ist mit P212 verbunden und dient für Erweiterungen.

Pin	Funktion	Beschreibung			
1					
2	Reserviert für Erwieterungen				
3					
3					

I/O-Anschluss DSP J3

Die Pins an diesem Jumper sind mit einem Teil der MP-Pins des DSP verbunden.

Pin	Funktion	Beschreibung			
1	DVDD	Interne Betriebsspannung Digitalteil			
2	DSP MP9	MP-Pin des DSP			
3	DSP MP2	MP-Pin des DSP			
4	DSP MP0	MP-Pin des DSP, mit Pull-Up Widerstand 10K			
5	DSP MP1	MP-Pin des DSP, mit Pull-Up Widerstand 10K			
6	DSP MP3	MP-Pin des DSP, mit Pull-Up Widerstand 10K			
7	DSP MP4	MP-Pin des DSP, mit Pull-Up Widerstand 10K			
8	GND	Masseanschluss (digital)			

I/O-Anschluss DSP J4

Die Pins an diesem Jumper sind mit allen MP-Pins des DSP verbunden.

Pin	Funktion	Beschreibung			
1	DSP MP0	MP-Pin des DSP, mit Pull-Up Widerstand 10K			
2	DSP MP1	MP-Pin des DSP, mit Pull-Up Widerstand 10K			
3	DSP MP2	MP-Pin des DSP, mit Pull-Up Widerstand 10K			
4	DSP MP3	MP-Pin des DSP, mit Pull-Up Widerstand 10K			
5	DSP MP4	MP-Pin des DSP			
6	DSP MP5	MP-Pin des DSP			
7	DSP MP6	MP-Pin des DSP			
8	DSP MP7	MP-Pin des DSP			
9	DSP MP8	MP-Pin des DSP			
10	DSP MP9	MP-Pin des DSP			

11	DSP MP10	MP-Pin des DSP
12	DSP MP11	MP-Pin des DSP

Analogausgang 3 J5

An diesem Pin ist der Analogausgang DAC3 des DSP verunden.

ADDR1/CDATA/WB J6

Dieser Pin ist mit dem Anschluss ADDR1/CDATA/WB des DSP verbunden. Zur weiteren Erläuterung siehe Datenblatt des ADAU170x.

SELFBOOT-Funktion des DSP J7

Dieser Pin ist mit dem Anschluss SELFBOOT des DSP verbunden. Wird er mit Digital-High-Pegel verbunden so lädt der DSP nach einem RESET automatisch Programm und Daten aus dem externen EEPROM. Zur weiteren Erläuterung siehe Datenblatt des ADAU170x.

Pin	Funktion	Beschreibung			
1	DSP_SELFBOOT	SELFBOOT-Pin des DSP			
2	DVDD	Interne Betriebsspannung Digitalteil			

CLATCH/WP-Funktion des DSP J8

Dieser Pin ist mit dem Anschluss CLATCH/WP des DSP und des EEPROMS verbunden. Zu Erläuterung siehe Datenblatt des ADAU170x.

Pin	Funktion	Beschreibung			
1	DSP_CLATCH/WP	CLATCH/WP-Pin des DSP			
2	GND	Masse digital			

RESET-Eingang J9

Dieser Pin ist mit dem Anschluss RESET-Eingang des RESET-Generators verbunden. Ein ausreichend langer positiver Puls erzeugt ein RESET-Signal für den DSP und den Mikrocontroller.

I/O-Pins des Mikrocontrollers J10 und J11

An Jumper J10 und J11 sind die I/O-Pins des Mikrocontrollers herausgeführt. Sie dienen für Erwieterungen bzw. zur ISP-Programmierung des Mikrocontrollers.

110:

Pin	Funktion	Beschreibung			
1	MC PA2	Mikrocontroller Port A			
2	MC PD0/RXD	Mikrocontroller Port D			
3	MC PD1/TXD	Mikrocontroller Port D			
4	MC PA1	Mikrocontroller Port A			
5	MC PA0	Mikrocontroller Port A			
6	MC PD2	Mikrocontroller Port D			

Datenblatt DSP4audio HUBER SIGNAL PROCESSING

7	MC PD3	Mikrocontroller Port D
8	MC PD4	Mikrocontroller Port D
9	MC PD5	Mikrocontroller Port D
10	GND	Masseanschluss (digital)

J11:

Pin	Funktion	Beschreibung			
1	MC PD6	Mikrocontroller Port D			
2	MC PB0	Mikrocontroller Port B			
3	MC PB1	Mikrocontroller Port B			
4	MC PB2	Mikrocontroller Port B			
5	MC PB3	Mikrocontroller Port B			
6	MC PB4	Mikrocontroller Port B			
7	MC PB5	Mikrocontroller Port B			
8	MC PB6 / I2C_SCL	Mikrocontroller Port B bzw. I ² C-Bus Taktsignal SCL			
9	MC PB7 / I2C_SDA	Mikrocontroller Port B bzw. I ² C-Bus Datensignal SDA			
10	MC VCC	Mikrocontroller VCC = Betriebsspannung Digitalteil			

I²C-Verbindung DSP-Mikrocontroller SDA J12

Dieser Jumper verbindet das Datensignal des l²C-Busses von DSP und Mikrocontroller. Für eine externe Steuerung über den Mikrocontroller muss diese Verbindung geschlossen sein.

Die I²C-Bus-Anschlüsse erlauben auch eine externe Steuerung des Systems mit SigmaStudio über das ADUSB2Z bzw. USBi-Interface von Analog Devices.

Pin	Funktion	Beschreibung			
1	I2C_SDA	I ² C-Bus Datensignal SDA am DSP			
2	I2C_SDA	I ² C-Bus Datensignal SDA am Mikrocontroller			

I²C-Verbindung DSP-Mikrocontroller SCL J13

Dieser Jumper verbindet das Taktsignal des l²C-Busses von DSP und Mikrocontroller. Für eine externe Steuerung über den Mikrocontroller muss diese Verbindung geschlossen sein.

Die I^2 C-Bus-Anschlüsse erlauben auch eine externe Steuerung des Systems mit SigmaStudio über das ADUSB2Z bzw. USBi-Interface von Analog Devices.

Pin	Funktion	Beschreibung			
1	I2C_SCL	I ² C-Bus Taktsignal SCL am DSP			
2	I2C_SCL	I ² C-Bus Taktsignal SCL am Mikrocontroller			

Digitale Signalverarbeitung

Die digitale Signalverarbeitung kann mit der Software SigmaStudio von Analog Devices erstellt und in den DSP oder das EEPROM geladen werden. Zur Verwendung von SigmaStudio muss von Analog Devices eine entsprechende Lizenz erworben werden.

Beispiele für Algorithmen des SigmaStudio:

- · Biguad Filter
- · FIR Filter
- · Bass, Treble, Low-/Highpass, Shelving-, Peak-, Notchfilter mit varablem Q
- · Dynamik Prozessoren mit Softknee-Funktion und Peak-/RMS-Detektor, Single-/Multiband
- Delays
- Signalgeneratoren (Sinus, Sägezahn, Dreieck, Rechteck, Rauschen)
- Mixer und Splitter
- Volume
- Surround Virtualizer
- · Bass Enhancement
- Dolby® ProLogic® II
- Waves MaxxBass®
- SRS® TruSurround XT™

Weiterhin kann eine digitale Signalverarbeitung nach Kundenvorgaben erstellt werden.

Externe Steuerung

I/O-Pins des DSP

Die MP-Pins des DSP erlauben eine externe Steuerung. Jeder Pin kann im DSP als Taster, Schalter, Analog-Potentiometer, Drehimpulsgeber oder LED-Ausgang konfiguriert werden. Die serielle Ausio-Schnittstelle ist ebenfalls über die MP-Pins konfigurierbar.

PC-Software

Das System kann über USB (virtueller COM-Port) an einen Steuerrechner angeschlossen werden. Eine entsprechende Software beinhaltet die zur DSP-Software passende Steuerung und eine Benutzeroberfläche. Diese beiden Komponenten bilden eine Application.

Die beiliegende Application – also eine PC-Beispielsoftware (lauffähig unter Microsoft Windows ab XP) stellt im Verbund mit der zugehörigen DSP-Firmware eine Subwoofer-Weiche mit Limiter dar.

Applications können nach Kundenwunsch erstellt werden.

Technische Daten

Die technischen Daten gelten für eine Abtastrate des ADAU170x von 48 kHz.

Parameter	min.	typ.	max.	Einheit	Messbedingungen
Einganggsspannung		+4	+21	dBu	symmetrisch ¹
Ausgangsspannung		+4	+21	dBu	symmetrisch
Eingangsimpedanz		20		kΩ	symmetrisch
		10		kΩ	unsymmetrisch
Ausgangsimpedanz		240		Ω	symmetrisch
DNR	93	95	96	dB	relativ +20 dBu

1 Weiterhin möglich: Asymmetrischer Eingang

Tel: 08681 / 479 357 Fax: 08681 / 479 358 info@huber-signal.com www.huber-signal.de

DSP4audio

HUBER SIGNAL PROCESSING

					B = 22 kHz
THD+N (+20 dBu)		0,0071	0,0085	%	f = 1 kHz V = 1 B = 22 kHz K2 K9
THD+N (+4 dBu)		0,011	0,017	%	f = 1 kHz V = 1 B = 22 kHz K2 K9
Abtastrate f _s		48	192	kHz	siehe Fußnote²
Frequenzgang		2020.000		Hz	+0 / -1,5 dB
Betriebsspannung	+/-17	+/-18	+/-243		
Stromaufnahme		+150 / -10	+180 / -30	mA	U = +/-18V
Betriebs-temperatur	0		+504	°C	

Spezifikation gilt für 48 kHz Abtastrate, 96 und 192 kHz sind ebenfalls möglich
unter Verwendung eines geeigneten Kühlkörpers
unter Verwendung einer externen Kühlfläche am Spannungsregler